Associations of fertility parameters with fatty acids and DNA methylation in Mexican women undergoing in vitro fertilization (2024)

References

  1. Rogers J, Mitchell GW. The relation of obesity to menstrual disturbances. N Engl J Med. 1952;247:53–5.

    Article CAS Google Scholar

  2. Sermondade N, Huberlant S, Bourhis-Lefebvre V, Arbo E, Gallot V, Colombani M, et al. Female obesity is negatively associated with live birth rate following IVF: a systematic review and meta-analysis. Hum Reprod Update. 2019;25:439–51.

    Article CAS Google Scholar

  3. Sciorio R, Bellaminutti S, Tramontano L, Esteves SC. Impact of obesity on medically assisted reproductive treatments. Zygote. 2022;30:431–9.

    Article CAS Google Scholar

  4. Ravisankar S, Ting AY, Murphy MJ, Redmayne N, Wang D, McArthur CA, et al. Short-term Western-style diet negatively impacts reproductive outcomes in primates. JCI Insight. 2021;6:138312.

    Article Google Scholar

  5. Hou Y-J, Zhu C-C, Duan X, Liu H-L, Wang Q, Sun S-C. Both diet and gene mutation induced obesity affect oocyte quality in mice. Sci Rep. 2016;6:18858.

    Article CAS Google Scholar

  6. Kannan S, Bhaskaran RS. Sustained obesity reduces litter size by decreasing proteins regulating folliculogenesis and ovulation in rats—a cafeteria diet model. Biochem Biophys Res Commun. 2019;519:475–80.

    Article CAS Google Scholar

  7. Yuan P, Yang C, Ren Y, Yan J, Nie Y, Yan L, et al. A novel hom*ozygous mutation of phospholipase C zeta leading to defective human oocyte activation and fertilization failure. Hum Reprod. 2020;35:977–85.

    Article CAS Google Scholar

  8. Valckx SDM, Arias-Alvarez M, De Pauw I, Fievez V, Vlaeminck B, Fransen E, et al. Fatty acid composition of the follicular fluid of normal weight, overweight and obese women undergoing assisted reproductive treatment: a descriptive cross-sectional study. Reprod Biol Endocrinol. 2014;12:13.

    Article Google Scholar

  9. Niu Z, Lin N, Gu R, Sun Y, Feng Y. Associations between insulin resistance, free fatty acids, and oocyte quality in polycystic ovary syndrome during in vitro fertilization. J Clin Endocrinol Metab. 2014;99:E2269–76.

    Article CAS Google Scholar

  10. Matorras R, Exposito A, Ferrando M, Mendoza R, Larreategui Z, Laínz L, et al. Oocytes of women who are obese or overweight have lower levels of n-3 polyunsaturated fatty acids compared with oocytes of women with normal weight. Fertil Steril. 2020;113:53–61.

    Article CAS Google Scholar

  11. Shaaker M, Rahimipour A, Nouri M, Khanaki K, Darabi M, Farzadi L, et al. Fatty acid composition of human follicular fluid phospholipids and fertilization rate in assisted reproductive techniques. Iran Biomed J. 2012;16:162–8.

    CAS Google Scholar

  12. Mirabi P, Chaichi MJ, Esmaeilzadeh S, Ali Jorsaraei SG, Bijani A, Ehsani M, et al. The role of fatty acids on ICSI outcomes: a prospective cohort study. Lipids Health Dis. 2017;16:18.

    Article CAS Google Scholar

  13. Ciepiela P, Bączkowski T, Drozd A, Kazienko A, Stachowska E, Kurzawa R. Arachidonic and linoleic acid derivatives impact oocyte ICSI fertilization—a prospective analysis of follicular fluid and a matched oocyte in a ‘one follicle—One retrieved oocyte—One resulting embryo’ investigational setting. PLoS One. 2015;10:e0119087.

    Article Google Scholar

  14. Ruiz-Sanz J-I, Pérez-Ruiz I, Meijide S, Ferrando M, Larreategui Z, Ruiz-Larrea M-B. Lower follicular n-3 polyunsaturated fatty acid levels are associated with a better response to ovarian stimulation. J Assist Reprod Genet. 2019;36:473–82.

    Article Google Scholar

  15. Chiu Y-H, Karmon AE, Gaskins AJ, Arvizu M, Williams PL, Souter I, et al. Serum omega-3 fatty acids and treatment outcomes among women undergoing assisted reproduction. Hum Reprod. 2018;33:156–65.

    Article CAS Google Scholar

  16. Stoffel W, Schmidt-Soltau I, Binczek E, Thomas A, Thevis M, Wegner I. Dietary ω3-and ω6-polyunsaturated fatty acids reconstitute fertility of juvenile and adult FADS2-deficient female and male mice. Mol Metab. 2020;36:100974.

    Article CAS Google Scholar

  17. Malott KF, Reshel S, Ortiz L, Luderer U. Glutathione deficiency decreases lipid droplet stores and increases reactive oxygen species in mouse oocytes. Biol Reprod. 2022;106:1218–31.

    Article Google Scholar

  18. Li Q, Guo S, Yang C, Liu X, Chen X, He J, et al. High-fat diet-induced obesity primes fatty acid β-oxidation impairment and consequent ovarian dysfunction during early pregnancy. Ann Transl Med. 2021;9:887.

    Article CAS Google Scholar

  19. Leung ZCL, Abu Rafea B, Watson AJ, Betts DH. Free fatty acid treatment of mouse preimplantation embryos demonstrates contrasting effects of palmitic acid and oleic acid on autophagy. Am J Physiol Cell Physiol. 2022;322:C833–C848.

    Article CAS Google Scholar

  20. Forman BM, Chen J, Evans RM. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proc Natl Acad Sci USA. 1997;94:4312–7.

    Article CAS Google Scholar

  21. Hall E, Volkov P, Dayeh T, Bacos K, Rönn T, Nitert MD, et al. Effects of palmitate on genome-wide mRNA expression and DNA methylation patterns in human pancreatic islets. BMC Med. 2014;12:103.

    Article Google Scholar

  22. Silva-Martínez GA, Rodríguez-Ríos D, Alvarado-Caudillo Y, Vaquero A, Esteller M, Carmona FJ, et al. Arachidonic and oleic acid exert distinct effects on the DNA methylome. Epigenetics. 2016;11:321–34.

    Article Google Scholar

  23. Pérez-Mojica JE, Lillycrop KA, Cooper C, Calder PC, Burdge GC. Docosahexaenoic acid and oleic acid induce altered DNA methylation of individual CpG loci in Jurkat T cells. Prostaglandins Leukot Essent Fat Acids. 2020;158:102128.

    Article Google Scholar

  24. Ceccarelli V, Nocentini G, Billi M, Racanicchi S, Riccardi C, Roberti R, et al. Eicosapentaenoic acid activates RAS/ERK/C/EBPβ pathway through H-Ras intron 1 CpG island demethylation in U937 leukemia cells. PLoS One. 2014;9:e85025.

    Article Google Scholar

  25. Barrès R, Osler ME, Yan J, Rune A, Fritz T, Caidahl K, et al. Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab. 2009;10:189–98.

    Article Google Scholar

  26. Ramaiyan B, Talahalli RR. Dietary unsaturated fatty acids modulate maternal dyslipidemia-induced dna methylation and histone acetylation in placenta and fetal liver in rats. Lipids. 2018;53:581–8.

    Article CAS Google Scholar

  27. Perfilyev A, Dahlman I, Gillberg L, Rosqvist F, Iggman D, Volkov P, et al. Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: a randomized controlled trial. Am J Clin Nutr. 2017;105:991–1000.

    Article CAS Google Scholar

  28. de la Rocha C, Pérez-Mojica E, León SZ, Cervantes-Paz B, Tristán-Flores FE, Rodríguez-Ríos D, et al. Associations between whole peripheral blood fatty acids and DNA methylation in humans. Sci Rep. 2016;6:25867.

    Article Google Scholar

  29. Pescador-Tapia A, Silva-Martínez GA, Fragoso-Bargas N, Rodríguez-Ríos D, Esteller M, Moran S, et al. Distinct associations of BMI and fatty acids with DNA methylation in fasting and postprandial states in men. Front Genet. 2021;12:665769.

    Article CAS Google Scholar

  30. Karimi M, Vedin I, Freund Levi Y, Basun H, Faxén Irving G, Eriksdotter M, et al. DHA-rich n–3 fatty acid supplementation decreases DNA methylation in blood leukocytes: the OmegAD study. Am J Clin Nutr. 2017;106:1157–65.

    Article CAS Google Scholar

  31. Bouwens M, van de Rest O, Dellschaft N, Bromhaar MG, de Groot LC, Geleijnse JM, et al. Fish-oil supplementation induces antiinflammatory gene expression profiles in human blood mononuclear cells. Am J Clin Nutr. 2009;90:415–24.

    Article CAS Google Scholar

  32. Niculescu MD, Lupu DS, Craciunescu CN. Perinatal manipulation of α-linolenic acid intake induces epigenetic changes in maternal and offspring livers. FASEB J. 2013;27:350–8.

    Article CAS Google Scholar

  33. de la Rocha C, Rodríguez-Ríos D, Ramírez-Chávez E, Molina-Torres J, de Jesús Flores-Sierra J, Orozco-Castellanos LM, et al. Cumulative metabolic and epigenetic effects of paternal and/or maternal supplementation with arachidonic acid across three consecutive generations in mice. Cells. 2022;11:1057.

    Article Google Scholar

  34. Barbieri B, Alvelius G, Papadogiannakis N. Lower arachidonic acid content and preferential beta-oxidation of arachidonic acid over palmitic acid in tumour cell lines as compared to normal lymphoid cells. Biochem Mol Biol Int Pages. 1998;45:1105–12.

    CAS Google Scholar

  35. Keating ST, El-Osta A. Epigenetics and metabolism. Circ Res. 2015;116:715–36.

    Article CAS Google Scholar

  36. Seisenberger S, Peat JR, Hore TA, Santos F, Dean W, Reik W. Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos Trans R Soc B Biol Sci. 2012;368:20110330.

    Article Google Scholar

  37. Deurenberg P, Deurenberg-Yap M. Validity of body composition methods across ethnic population groups. Forum Nutr. 2003;56:299–301.

    Google Scholar

  38. Son WY, Yoon SH, Lim JH. Effect of gonadotrophin priming on in-vitro maturation of oocytes collected from women at risk of OHSS. Reprod Biomed Online. 2006;13:340–8.

    Article CAS Google Scholar

  39. Pituch KA, Stevens JP. Applied multivariate statistics for the social sciences. 6th ed. Routledge; 2016.

  40. Kusminski CM, Scherer PE. Mitochondrial dysfunction in white adipose tissue. Trends Endocrinol Metab. 2012;23:435–43.

    Article CAS Google Scholar

  41. Reed ZE, Suderman MJ, Relton CL, Davis OSP, Hemani G. The association of DNA methylation with body mass index: distinguishing between predictors and biomarkers. Clin Epigenet. 2020;12:50.

    Article CAS Google Scholar

  42. Li S, Bui M, Hopper JL. Inference about causation from examination of familial confounding (ICE FALCON): a model for assessing causation analogous to Mendelian randomization. Int J Epidemiol. 2020;49:1259–69.

    Article Google Scholar

  43. Freire MO, Van, Dyke TE. Natural resolution of inflammation. Periodontology 2000. 2013;63:149–64.

    Article Google Scholar

  44. Zarezadeh R, Nouri M, Hamdi K, Shaaker M, Mehdizadeh A, Darabia M. Fatty acids of follicular fluid phospholipids and triglycerides display distinct association with IVF outcomes. Reprod Biomed Online. 2020;42:301–9.

    Article Google Scholar

  45. Carta G, Murru E, Banni S, Manca C. Palmitic acid: physiological role, metabolism and nutritional implications. Front Physiol. 2017;8:902.

    Article Google Scholar

  46. Matorras R, Ruiz JI, Mendoza R, Ruiz N, Sanjurjo P, Rodriguez-Escudero FJ. Fatty acid composition of fertilization-failed human oocytes. Hum Reprod. 1998;13:2227–30.

    Article CAS Google Scholar

  47. Eskew AM, Wormer KC, Matthews ML, Norton HJ, Papadakis MA, Hurst BS. The association between fatty acid index and in vitro fertilization outcomes. J Assist Reprod Genet. 2017;34:1627–32.

    Article Google Scholar

  48. Kdous M, Braham M, Merdassi G, Takalli Z, Zhioua A, Zhioua F. Failure of in vitro fertilization: prognosis criteriae. Tunis Med. 2015;93:702–7.

    Google Scholar

  49. Loy SL, Cheung YB, Soh SE, Ng S, Tint MT, Aris IM, et al. Female adiposity and time-to-pregnancy: a multiethnic prospective cohort. Hum Reprod. 2018;33:2141–9.

    Article CAS Google Scholar

  50. Geyer KK, Munshi SE, Vickers M, Squance M, Wilkinson TJ, Berrar D, et al. The anti-fecundity effect of 5-azacytidine (5-AzaC) on Schistosoma mansoni is linked to dis-regulated transcription, translation and stem cell activities. Int J Parasitol Drugs Drug Resist. 2018;8:213–22.

    Article Google Scholar

  51. Foss HM, Roberts CJ, Selker EU. Mutations in the dim-1 gene of Neurospora crassa reduce the level of DNA methylation. Mol Gen Genet. 1998;259:60–71.

    Article CAS Google Scholar

  52. Zhang J, Xing Y, Li Y, Yin C, Ge C, Li F. DNA methyltransferases have an essential role in female fecundity in brown planthopper, Nilaparvata lugens. Biochem Biophys Res Commun. 2015;464:83–8.

    Article CAS Google Scholar

Download references

Associations of fertility parameters with fatty acids and DNA methylation in Mexican women undergoing in vitro fertilization (2024)

References

Top Articles
Latest Posts
Article information

Author: Patricia Veum II

Last Updated:

Views: 6277

Rating: 4.3 / 5 (44 voted)

Reviews: 91% of readers found this page helpful

Author information

Name: Patricia Veum II

Birthday: 1994-12-16

Address: 2064 Little Summit, Goldieton, MS 97651-0862

Phone: +6873952696715

Job: Principal Officer

Hobby: Rafting, Cabaret, Candle making, Jigsaw puzzles, Inline skating, Magic, Graffiti

Introduction: My name is Patricia Veum II, I am a vast, combative, smiling, famous, inexpensive, zealous, sparkling person who loves writing and wants to share my knowledge and understanding with you.